skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nail, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In the last several decades, public interest for electric vehicles (EVs) and research initiatives for smart AC and DC microgrids have increased substantially. Although EVs can yield benefits to their use, they also present new demand and new business models for a changing power grid. Some of the challenges include stochastic demand profiles from EVs, unplanned load growth by rapid EV adoption, and potential frequency (harmonics) and voltage disturbances due to uncoordinated charging. In order to properly account for any of these problems, an accurate and validated model for EV distributions in a power grid must be established. This model (or several models) may then be used for economic and technical analyses. This paper supplies insight into the impact that EVs play in effecting critical loads in a system, and develops a theoretical model to further support a hardware in-the-loop (HIL) real time simulation of modelling and analysis of a distribution feeder with distributed energy resources (DERs) and EVs based on existing data compiled. 
    more » « less